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SUMMARY

In this paper, based on the idea of the ‘modified partial differential equation’, a new designing approach
to explicit finite difference schemes for the Burgers equation and PDE is proposed. The approach differs
from other constructured methods in such a way that it considers the requests of the numerical
dissipation and dispersion coefficients first. This method is much more constructional and directional.
The results of numerical tests indicate that the method is quite successful. Copyright © 1999 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

There are a lot of papers [1–4] discussing the design of finite difference schemes (FDS) by the
await-definiting coefficient method. No doubt these methods were successful in constructing an
FDS and in seeking the numerical simulations, and were constructional and directional
compared with other methods. However, with these methods it is not yet possible to touch
deeply upon the advanced problems of FDS, and they are either not strict enough or too
complex. Especially, how to control the numerical remainder-effect, such as the numerical
dissipation or dispersion of FDS [2,5–7], has not been discussed.

In this paper, based on the idea of the ‘modified partial differential equation’ of FDS [8],
according to the consistency, monotonicity or positivity, the remainder-effect analysis of FDS
[5–7], the coefficients of FDS can be determined. So the approach is much more construc-
tional and directional. Moreover, it is a designing way for the high resolutional and high-order
accuracy FDS.

In Section 2, some preliminary remarks are introduced. Especially, the modified partial
differential equation (MPDE) of FDS and the remaindereffect analysis of FDS are outlined. In
Section 3, the case of the non-viscosity Burgers equation is discussed. In particular, a new
scheme—the LW+o scheme—is designed. In Section 4, the FDS for the Burgers equation are
discussed and analysed. In addition, it is noted that many schemes suited to non-viscosity
Burgers equation, such as upwind, Lax, LW+o, may be used to numerically compute general
Burgers equation. Finally, some discussions and explanations are given. In this paper, the
numerical results for non-viscosity Burgers equations are satisfactorily given.
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2. PRELIMINARY REMARKS

Consider the following partial differential equation

ut=Lu, L=L
� (
(x
�

, (2.1)

where x, t, u are the space and time-independent and -dependent variables respectively. L is the
space linear partial differential operator depending on Dx=(/(x. Without losing generality,
the suitable FDS consistent with (2.1) can be expressed as [1,2]

%
a

Aauj+a
n+1=%

b

Bbuj+b
n , (2.2)

where Aa, Bb are the coefficients of the FDS, a and b take some positive or negative integers
depending on the FDS; uj

n is the numerical approximation of the continuous variable u(x, t)
at the grid point (xj, tn).

By expanding the scheme in Taylor series at the grid point (xj, tn), we have
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where Dt and Dx are the time and space step lengths of the finite difference grid. Using the
modified equation approach described by Warming and Hyett, and eliminating the high-order
(]2) time derivative terms, we can obtain ‘the modified partial differential equation’ [8]
completely equivalent to the scheme (2.2) as follows:

Ut=LU+Rs(U)+Rp(U). (2.4a)

Here the superscripts ‘n ’ and subscripts ‘j ’ are omitted. Where the numerical dissipation
remainder Rp(U) and the numerical dispersion remainder Rp(U) of the scheme (2.2) respec-
tively are

Rs(U)=n2

(2U
(x2 +n4

(4U
(x4 + · · · , (2.4b)

Rp(U)=m3

(3U
(x3 +m5

(5U
(x5 + · · · . (2.4c)

Based on the analysis and discussion of References [2–8], we have the following conclusions:
1. The consistency condition is

%
a

Aa=%
b

Bb. (2.5a)

In particular, if Aa=0 (a"0), A0=1, then

%
b

Bb=1, (2.5b)

and if

Bb\0, (2.5c)

then the scheme is a monotonic and positive scheme, or a TVB (total variation bounded)
scheme and non-oscillatory scheme.
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2. If

n2\0 or n2=0 and n4B0, (2.6a)

the scheme (2.2) is numerical dissipative and stable. On the other hand, if

n2B0 or n2=0 and n4\0, (2.6b)

the scheme (2.2) is numerical anti-dissipative and unstable.
3. If

n2=0, 4�m3�� �n4
2�, (2.7)

then the scheme (2.2) is numerical superior-dispersive. In the numerical simulation for
discontinuous problems (such as shock), the parasitic oscillation or spurious wave may be
produced and developed.

From the above discussion, an important problem is proposed here, i.e. how to design a
stable, high resolutionary scheme by controlling the numerical effects of dissipation and
dispersion.

3. THE DESIGN AND ANALYSIS OF THE FDS FOR NON-VISCOSITY BURGERS

3.1. General case for a two-le6el explicit scheme

Consider the simple model—non-viscosity Burgers equation:

ut+aux=0 (a\0). (3.1)

Note that simple explicit schemes consistent with (3.1) have the following form:

uj
n+1=a1uj+1

n +a0uj
n+a−1uj−1

n . (3.2)

By the Taylor expanding method we have�
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uj
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or by rewriting it as!
[1− (a1+a0+a−1)]+DtDt−Dx(a1−a−1)Dx+

Dt2

2!
Dt

2−
Dx2

2!
(a1+a−1)Dx

2 + · · ·
"

uj
n

=0.

Based on (2.5) and the equivalence with the original PDE (3.1), we have

Theorem 1
Assume that the solution u(x, t) of (3.1) be smooth enough, and the scheme (3.2) be consistent
with the original PDE (3.1), then

1) a1+a0+a−1=1, (3.3a)
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2) a−1−a1=c=
a Dt
Dt
\0. (3.3b)

Denoting a=2a1+c, the expression can be rewritten as!
Dt+aDx+
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(3.4)

Eliminating the high-order time derivations (Dtn/n !)Dt
n (n]2) by the self-elimination method

(do not replace with the original equation! Otherwise the resulting MPDE will not be
completely equivalent to the original FDS (3.2)!) we can get the MPDE of (3.2)!

Dt+aDx+
Dx
2

a
c

(c2−a)Dx
2 +

Dx2

12
a(4c2+2−6a)Dx

3

+
Dx3

24
a
c

[3a2− (12c2+3)a+6c4+4c2]Dx
4"U=0 (3.4b)

and rewrite it in the following remainder form

Ut+aUx=Rs(U)+Rp(U), (3.5)

Rs(U)=
Dx
2

a
c

(a−c2)Uxx−
Dx3

24
a
c

[6c4+4c2+3a2− (12c2+1)a ]Uxxxx+ · · · ,

Rp(U)=
Dx2

12
a(6a−4c2−2)Uxxx+ · · · .

Based on the discussion in Section 2, we have

Theorem 2
Assuming that the solution function u(x, t) is smooth enough, and the space step length Dx is
small enough, we have

1) if

n2\0 or n2=0 and n4B0,

i.e.

a1\
c2−c

2
or a1=

c2−c
2

and cB1, (3.6a)

then the scheme (3.2) is stable and dissipative. On the other hand, if

a1B
c2−c

2
or a1=

c2−c
2

and c\1, (3.6b)

then the scheme (3.2) is unstable and anti-dissipative.
2) if

a1\0, (3.7)

then the scheme (3.2) is monotonic and positive.
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Proof
Following Hirt [9], Warming and Hyett [8] and the discussion in Section 2, the stability of the
scheme (3.2) can be safeguarded by the positive condition of the second-order remainder, i.e.

n2=
a Dx

2c
(a−c2)\0,

where c=a Dt/Dx is the Courant number, or

a−c2=2a1+c−c2\0,

or

a1\
c2−c

2
,

if a1= (c2−c)/2, then the stable condition is

n4=
Dx3

24
a
c

[6c4+c2+3a2− (12c2+1)a ]\0

because a, c\0 and a=2a1+c, then

3c2(1−c2)\0,

or

cB1. (3.8)

This is the famous CFL condition. The conclusion 2) can be proved in the similar way.

Since a1\0, 1\c\0, a−1=a1+c\0 and a0=1− (2a1+c)=1−a\0, then the scheme
(3.2) is monotonic and positive.

3.2. Applications for classical schemes

Based on the remainder expression and theorem 2, we may consider and check a lot of
familiar schemes:

Upwind: a1=0[a−1=c, a0=1−c, n2=
a
2

(1−c)Dx,

m3= −
1
6

a(1−c)(1−2c)Dx2,

Lax: a1=
1−c

2
[a−1=

1+c
2

, a0=0, n2=
a
2c

(1−c)Dx, m3=
a
3

(1−c2)Dx2,

FTCS: a1= −
c
2
[a−1=

c
2
, a0=1, n2= −

1
2

ca Dx, m3= −
a
6

(1+2c2)Dx2,

Lax�Wendroff: a1=
c2−c

2
[a−1=

c2+c
2

, a0=1−c2, n2=0, n4=
ac
8

(1−c2)Dx3,

m3= −
a
6

(1−c2)Dx2.
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By theorem 2 and the above dissipation and dispersion remainders of every FDS, we have the
following result.

Theorem 3
If u(x, t) is smooth enough, Dx is small enough and cB1, then

1. FTCS scheme is unconditionally unstable and anti-dissipative.
2. Upwind, Lax, LW are stable. (Their numerical dissipation curves n2=n(c) are shown in

Figure 1.)
3. Upwind, Lax are monotonic and positive.
4. LW is not a monotonic, positive and stable scheme.

From the relation (3.3) of theorem 1, we can see that the coefficient a1 is a key of designing
a monotonic and positive explicit scheme. So we must examine the monotonic and positive
region of a1=a1(c):

D={a1=a1(c)]0, 1\c\0}. (3.10)

Figure 2 indicates the regions according to the classical schemes of Section 3.2

1. Upwind: Dup={a1=0, 0BcB1}
2. Lax: DLax={a1= (1−c)/2, 0BcB1}
3. LW: DLW={a1= (c2−c)/2\0, 0BcB1}=0
4. FTCS: Dftcs={a1= −c/2\0, 0BcB1}=0

Obviously a simple approach to construct a monotonic and positive scheme is to reform the
LW scheme by parallel replacement upwards.

Figure 1. The Lax, the Upwind and the LW numerical dissipation curves n2=n(c).
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Figure 2. Indication of the regions according to the classical schemes of Section 3.2.

3.3. LW+o scheme

Because of the LW scheme’s oscillating character and the Lax scheme’s ‘over smooth’
character, we can introduce a new monotonic and positive scheme—the LW+o scheme—as
follows:

a1=
c2+c

2
+

o

2
]0, o=o(c)�1 (3.11a)

and

a−1=
c2+c

2
+

o

2
]0, a0=1−c2−o\0, (3.11b)

or

uj
n+1=

�c2−c
2

+
o

2
�

uj+1
n + (1−c2−o)uj

n+
�c2+c

2
+

o

2
�

uj−1
n . (3.11c)

Obviously, o=1
4 is a limit case, i.e. the parallel replacement of the parabola of LW’s DLW to

the above c-axis; in this case we have

a1=
1
2
�

c−
1
2
�2

, a0=1−c2−
1
4

, a−1=
1
2
�

c+
1
2
�2

. (3.12a)

It is necessary that

a0=1−c2−
1
4
]0, or c5

'3
4
¬0.8660254, (3.12b)

and thus

n2=
Dx
2

a
c

(a−c2)=
Dx
2

ao

c
]

a Dx

4
3
, (3.12c)

m3=
Dx2

12
a(6a−4c2−2)=

Dx2

2
a
�

2c2−
1
2
�
5

a Dx2

12
. (3.12d)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 523–533 (1999)



LIU RUXUN ET AL.530

Generally speaking, we can take o/2] (c−c2)/2, so a1= (c2−c)/2+ (o/2)]0, a−1\0,
0Ba151−1/2(c2+c) and n2] (a Dx/4)(1−c). In this case, the numerical dissipation of the
LW+o scheme is a half that of the Upwind scheme. For example, assuming a=1, Dx=0.1,
c=0.9, we can take o=0.1, thus a1=0.005, a0=0.09, a−1=0.905, n2=0.005BDx2,
m3¬0.0002. The LW+o scheme is still second-order-accurate. From the numerical test results
given in Figure 3, we can easily see that they are satisfactory.

4. DISCUSSION OF THE EXPLICIT SCHEME FOR BURGERS EQUATION

Now we consider the Burgers equation

ut+aux=nuxx, (4.1)

and still use the three-point explicit scheme (3.2) and the MPDE (3.5).

Theorem 4
Assume that the solution u(x, t) of Burgers equation (4.1) is smooth enough, then the scheme
(3.2), consistent with (4.1), satisfies

1) a1+a0+a−1=1, (4.2a)

2) a−1−a1=c=
a Dt
Dx
\0, c� (0, 1), (4.2b)

3) n2=
Dx
2

a
c

(a−c2)\n or n2=n and n4B0. (4.2c)

By theorem 4, there is an interesting fact that the Upwind scheme, the Lax scheme and the
LW+o scheme may be also effective in numerically simulating the Burgers problems so long
as the conditions (4.2) are satisfied. This is the reason that the numerical dissipation of these
schemes are enough to replace the real viscosity ‘nuxx ’. For example, in the case of a=1,
n=0.01, Dx=0.1, we take c=0.795 for the Upwind scheme, c=0.9 for the Lax scheme and
c=0.9, o=0.18 for the LW+o scheme. The numerical results are presented in Figure 4.
Obviously the results are satisfactory.

Theorem 5
If u(x, t) is smooth enough and 0BcB1, then

1) The sufficient monotonic and positive condition of the scheme (3.2) for Burgers problems
is

s=
n Dt
Dx2 �

�c−c2

2
,

1−c2

2
n

. (4.3)

2) The stability condition is

a1\
nc

a Dx
+

c2−c
2

(4.4a)

or

a1=
nc

a Dx
+

c2−c
2

and c2+6sB1. (4.4b)
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Figure 3. The numerical results of the following problems: (a) ut+ux=0, u(x, 0)=
!1.0, as x50

0.0, as x\0
. (b) ut+ux=

0, u(x, 0)=
!1− �1−2x �

0.0

as 0Bx51.0

otherwise
.
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Figure 4. The numerical results of the following problem: ut+ux= 1
100uxx, u(x, 0)=sin p, u(0, t)=u(1, t)=0.

Proof
1) Following the discussion in Section 2, from the requirements a1, a0 and a−1\0, the

condition (4.3) is obvious. Similarly,
2) By theorem 4 or condition (4.2c), (4.4) is also easily introduced.

5. CONCLUSIONS

From this paper we can easily find that the intrinsic characteristics of the schemes mainly
depend on the coefficients ai, i= −1, 0, 1 and the Courant number c. Their values greatly
influence the schemes’ effect of numerical dissipation and dispersion and group velocity.
Therefore, a good approach for their selection is to examine the corresponding MPDE form
and the remainder-effect of the finite difference schemes, i.e. to suitably control dissipation and
dispersion remainders.

We have discussed the simplest two-level explicit schemes, such as the LW, the Upwind and
the Lax. In particular, it is well-known that the LW scheme is not monotonic or positive.
Besides, it usually introduces non-linear instability. Therefore, we proposed the LW+o

scheme, which overcomes the non-monotonicity. However, how to select o according to the
viscosity n of Burgers equation is very elaborate.

As far as the general explicit–implicit schemes of Burgers equation is concerned, although
they are more difficult than the above simple explicit schemes, a similar approach is still able
to achieve success. We will discuss them later in a forthcoming paper.
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